Primary Cardiomyocyte Cultures/Cardiac Sheet

//Primary Cardiomyocyte Cultures/Cardiac Sheet
Primary Cardiomyocyte Cultures/Cardiac Sheet 2019-01-24T08:41:07+00:00

Primary Cardiomyocyte Cultures/Cardiac Sheet

Primary Cardiomyocyte Cultures

Effect of a photosensitization reaction performed during the first 3 min after exposure of rat myocardial cells to talaporfin sodium in vitro.
Doi M, Ogawa E, Arai T.
Lasers Med Sci. 2017 Aug 5. doi: 10.1007/s10103-017-2298-3

Evaluation of electrical propagation delay with cardiomyocytes by photosensitization reaction in vitro
Marika Doi ; Emiyu Ogawa ; Tsunenori Arai.
Proc. SPIE 10062, Optical Interactions with Tissue and Cells XXVIII, 100620N (February 15, 2017); doi:10.1117/12.2250709

A New In Vitro Co-Culture Model Using Magnetic Force-Based Nanotechnology.
Takanari H, Miwa K, Fu X, Nakai J, Ito A, Ino K, Honda H, Tonomura W, Konishi S, Opthof T, van der Heyden MA, Kodama I, Lee JK.
J Cell Physiol. 2016 Oct;231(10):2249-56.

Rapid electrical stimulation causes alterations in cardiac intercellular junction proteins of cardiomyocytes.
Nakashima T, Ohkusa T, Okamoto Y, Yoshida M, Lee JK, Mizukami Y, Yano M.
Am. J. Physiol. Heart. Circ. Physiol., 2014 May, 306, H1324-33.

Effects of aldosterone on Cx43 gap junction expression in neonatal rat cultured cardiomyocytes.
Suzuki S, Ohkusa T, Sato T, Yoshida M, Yasui K, Miwa K, Lee JK, Yano M, Kodama I, Matsuzaki M.
Circ J. 2009 Aug;73(8):1504-12.

T-type Ca2+ channel blockers prevent cardiac cell hypertrophy through an inhibition of calcineurin-NFAT3 activation as well as L-type Ca2+ channel blockers.
Horiba M, Muto T, Ueda N, Opthof T, Miwa K, Hojo M, Lee JK, Kamiya K.
Life Sci. 2008 Mar 12;82(11-12):554-60.

Rapid electrical stimulation of contraction modulates gap junction protein in neonatal rat cultured cardiomyocytes: involvement of mitogen-activated protein kinases and effects of angiotensin II-receptor antagonist.
Inoue N, Ohkusa T, Nao T, Lee JK, Matsumoto T, Hisamatsu Y, Satoh T, Yano M, Yasui K, Kodama I, Matsuzaki M.
J Am Coll Cardiol. 2004 Aug 18;44(4):914-22.

Cardiac Sheet

Creation of mouse embryonic stem cell-derived cardiac cell sheets.
Matsuura K, Masuda S, Haraguchi Y, Yasuda N, Shimizu T, Hagiwara N, Zandstra PW, Okano T.
Biomaterials. 2011 Oct;32(30):7355-62.

Application of a cell sheet-polymer film complex with temperature sensitivity for increased mechanical strength and cell alignment capability.
Fujita H, Shimizu K, Nagamori E.
Biotechnol Bioeng. 2009 Jun 1;103(2):370-7.

Flk1(+) cardiac stem/progenitor cells derived from embryonic stem cells improve cardiac function in a dilated cardiomyopathy mouse model.
Baba S, Heike T, Yoshimoto M, Umeda K, Doi H, Iwasa T, Lin X, Matsuoka S, Komeda M, Nakahata T.
Cardiovasc Res. 2007 Oct 1;76(1):119-31.

Generation of cardiac and endothelial cells from neonatal mouse testis-derived multipotent germline stem cells.
Baba S, Heike T, Umeda K, Iwasa T, Kaichi S, Hiraumi Y, Doi H, Yoshimoto M, Kanatsu-Shinohara M, Shinohara T, Nakahata T.
Stem Cells. 2007 Jun;25(6):1375-83.

Construction of multi-layered cardiomyocyte sheets using magnetite nanoparticles and magnetic force.
Shimizu K, Ito A, Lee JK, Yoshida T, Miwa K, Ishiguro H, Numaguchi Y, Murohara T, Kodama I, Honda H.
Biotechnol Bioeng. 2007 Mar 1;96(4):803-9.

Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation.
Haraguchi Y, Shimizu T, Yamato M, Kikuchi A, Okano T.
Biomaterials. 2006 Sep;27(27):4765-74.

Tissue cardiomyoplasty using bioengineered contractile cardiomyocyte sheets to repair damaged myocardium: their integration with recipient myocardium.
Miyagawa S, Sawa Y, Sakaida S, Taketani S,Kondoh H, Memon IA, Imanishi Y, Shimizu T, Okano T, Matsuda H.
Transplantation. 2005 Dec 15;80(11):1586-95.

Alpha MED Scientific Inc.
209 Saito Bio-incubator 7-7-15,
Saito-asagi, Ibaraki Osaka 567-0085, Japan.
Email: support@med64.com
Phone: +81-72-648-7973